מטרות הניסוי: רקע תאורטי: מורה יקר! שים לב, כל התשובות הנכונות מסומנות באדום!

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "מטרות הניסוי: רקע תאורטי: מורה יקר! שים לב, כל התשובות הנכונות מסומנות באדום!"

Transcript

1 מורה יקר! שים לב, כל התשובות הנכונות מסומנות באדום! מטרות הניסוי: 1. חקירת התלות של עוצמת השדה המגנטי, שנוצר במרכז לולאה מעגלית נושאת זרם בשני פרמטרים: א. ב. עוצמת הזרם הזורם בלולאה, כאשר מספר הכריכות קבוע. מספר הכריכות של הלולאה, כאשר עוצמת הזרם קבועה. 2. מציאת גודל הרכיב האופקי של השדה המגנטי הארצי. רקע תאורטי: לכדור הארץ שדה מגנטי, בו הקוטב המגנטי הדרומי נמצא בסמוך לקוטב הגיאוגרפי הצפוני, ולהפך. בקו המשווה, כיוונו של וקטור השדה המגנטי הארצי מקביל לפני כדור הארץ, אך ברוב המקומות על פני כדה"א, וקטור השדה המגנטי הארצי איננו אופקי. לדוגמא, רכיבי השדה המגנטי הארצי באזור תל- אביב הם: הרכיב האופקי: )נסמן אותו ב BE ( הרכיב האנכי:

2 כאשר נניח מחט מגנטית )מגנט קטן( במקום כלשהו על פני כדור הארץ, המחט תתייצב לאורך הרכיב האופקי של השדה המגנטי שקיים במקום זה. כיוון המחט יהיה בקירוב מקביל לקו האורך )הקו צפון-דרום(, חוץ מאשר בקרבת הקטבים. בניסוי זה נתייחס רק לרכיב האופקי של השדה המגנטי הארצי. בניסוי נשתמש בעובדה, שאם במקום מסוים קיים שדה מגנטי אופקי נוסף, הרי שמחט המצפן תראה את הכיוון של השדה האופקי השקול. כידוע, במרכזה של כריכה מעגלית דקה, שדרכה זורם זרם, נוצר שדה מגנטי הניצב למישור הכריכה. נסמן שדה זה גודל השדה המגנטי שיוצר הזרם הוא. כאשר: μ0 הוא קבוע הפרמאביליות של הריק וערכו = N מספר הכריכות ן = עוצמת הזרם R = רדיוס הכריכה כיוונו של השדה נקבע על פי כלל יד ימין.

3 אם נציב מצפן במרכזה של כריכה מעגלית דקה, דרכה זורם זרם, כך שמישור הכריכה יוצב בכיוון צפון-דרום, הרי שעל מחט המצפן יפעלו: הרכיב האופקי של השדה המגנטי הארצי BE בכיוון צפון-דרום. השדה המגנטי שיוצר הזרם בכריכה המעגלית, Bi בכיוון ניצב לצפון-דרום. מחט המצפן )המוגבלת לתנועה אופקית בלבד( תתייצב ב"כיוון ביניים" כלשהו בין כיווני השדות, בהתאם לכיוון השדה מגנטי השקול. נסמן שדה שקול זה כ- βt היוצר זווית α עם כיוון הצפון. מתוך האיור ניתן לראות כי את זווית הסטייה α של מחט המצפן ניתן למצוא באמצעות הקשר: בסדרת הניסויים שנבצע, נמדוד את זווית הסטייה של מחט המצפן ביחס לכיוון צפון, כאשר הזרם קבוע ומספר הכריכות משתנה, או לחילופין- כאשר מספר הכריכות N הוא קבוע והזרם משתנה. באמצעות מדידות אלו נוכל למצוא את גודל הרכיב האופקי של השדה המגנטי הארצי.BE

4 שאלה 1 האם הקוטב הצפוני הגיאוגרפי מתלכד עם הקוטב הצפוני המגנטי? הסבירו )תוכלו לקרוא על כך במקורות שונים באינטרנט(. הקוטב הצפוני הגיאוגרפי והמגנטי לא מתלכדים, ליד הקוטב הצפוני הגיאוגרפי נמצא הקוטב הדרומי המגנטי של כדור הארץ. במהלך הניסוי, תבנו את המעגל החשמלי המתואר באיור: שאלה 2 כיצד לדעתכם ישפיע גודלו של המגנט על דיוק המדידה בניסוי? האם הדבר מגדיל או מקטין את שגיאת המדידה? הסבירו. רמז: האם המצפן מושפע רק מהשדה המגנטי שקיים במרכז הכריכה או שהוא מושפע גם מהשדה המגנטי הנמצא במקום אחר? מחט המצפן מושפעות גם מהשדה המגנטי שנמצא בסביבתכם, בנוסף לשדה המגנטי שבנוסחה. למעשה אנו מודדים שדה ממוצע, שקיים לאורך הקוטר של המצפן. ככל שנגדיל את המצפן, תגדל שגיאת המדידה שלנו.

5 שאלה 3 נניח שסטיית מחט המצפן באחד משלבי הניסוי הייתה מתקבלת 45. במצב זה, גודל השדה המגנטי שיוצרות כריכות הזרם גדול מ.../קטן מ.../ שווה ל... גודל הרכיב האופקי של השדה המגנטי הארצי. שאלה 4 נניח שתלמיד מציב את מישור הכריכות של הגלוונומטר במקביל לכיוון מזרח מערב )במקום צפון-דרום(, כלומר- המערכת מסובבת ב- 90 ביחס למיקום המקורי. הסבירו: כיצד ישפיע מצב זה על סטיית מחט המצפן? כיצד ישפיע החלפת כיוון הזרם בכריכות על סטיית מחט המצפן? במקרה זה, כיוון השדה המגנטי של גלוונומטר יכול להתלכד עם כיוון השדה המגנטי הארצי או להיות מנוגד לו, תלוי בכיוון הזרם שזורם בגלוונומטר. אם כיוון השדה המגנטי של הגלוונומטר מתלכד עם כיוון השדה המגנטי הארצי, מחט המצפן לא תסטה עם הגדלת הזרם, אלא תראה תמיד לכיוון הצפון. אם כיוון השדה המגנטי של הגלוונומטר יהיה בכיוון מנוגד לכיוון השדה המגנטי הארצי, אז הגדלת הזרם תגרום בשלב מסוים להיפוך מחט המצפן לכיוון דרום, זה יקרה כאשר גודלו של השדה המגנטי של הגלוונומטר יהיה גדול מערכו של השדה המגנטי הארצי.

6 שאלה 5 תלמיד חיבר את המעגל המתואר, וקיבל קריאת זרם שלילית, כמוראה בצילום. הסבירו: מה משמעות הסימן השלילי במד הזרם? רמז: מה היה קורה אילו התלמיד היה מחליף בין החוט האדום לחוט השחור בחיבורים אל מכשיר האמפרמטר? מקובל לקבוע את כיוון הזרם מהפוטנציאל הגבוה לנמוך. לכן כיוון הזרם במעגל הוא מההדק החיובי של מקור המתח. נקודת הייחוס של מכשיר המדידה היא כניסת ה -.COM עבור מד הזרם, כיוון חיובי מוגדר כאשר הזרם במעגל עובר מכניסת ה - COM אל יציאת האמפרים, וזרם שלילי מוגדר כזרם העובר מכניסת האמפרים אל יציאת ה.COM- כפי שרואים בצילום, הזרם במעגל הוא מהחוט האדום אל החוט השחור. כלומר כיוון הזרם הוא מכניסת האמפרים ליציאת ה - COM לכן מד הזרם מראה סימן שלילי. שאלה 6 נניח כי במהלך הניסוי סטתה מחט המצפן, מכיוון צפון אל עבר כיוון מערב. כמתואר בצילום. הסיבה לסטיה של מחט המצפן היא השפעת השדה המגנטי שנוצר כתוצאה מסגירת המעגל החשמלי. מהו כיוון השדה המגנטי שיוצרות כריכות הזרם בצילום המתואר? תארו בעזרת כלל יד ימין, כיצד ניתן למצוא את כיוון הזרם בכריכות.

7 את כיוון השדה המגנטי נמצא עפ"י כלל יד ימין: )אפשרות 1(: אגודל בכיוון הזרם, ואצבעות היד מתלפפות סביב התיל. כיוון האצבעות במרכז הכריכה יראו על כיוון השדה המגנטי. )אפשרות 2(: אצבעות היד מתלפפות סביב הכריכה המעגלית בכיוון הזרם, האגודל מצביע על כיוון השדה המגנטי. שאלה 7 התבוננו בצילום שלפניכם. מהו כיוון הזרם בכריכות? )סמנו את האפשרות הנכונה(. מ- 0 ל- a )מדרום לכיוון צפון( מ- 0 ל- b )מצפון לכיוון דרום( ממערב לכיוון דרום. מדרום לכיוון מערב. אי אפשר לדעת שאלה 8 נניח שהיינו מלפפים כריכה אחת או שתים במגמה הפוכה ליתר הכריכות בגלוונומטר. האם הדבר היה משפיע על מהלך הניסוי? תארו כיצד. ליפוף של חלק מכריכות בכיוון הפוך יגרום לזרימה הפוכה של זרם בחלק מהכריכות. דבר זה יגרום לקיזוז השדה המגנטי של הכריכות ההפוכות עם הכריכות הלא הפוכות.

8 שאלה 9 אחת ממטרות הניסוי כפי שהוגדרה בתחילת המשימה היא : חקירת התלות בין עוצמת השדה המגנטי שנוצר במרכז לולאה מעגלית נושאת זרם,לבין עוצמת הזרם הזורם בה. את עוצמת השדה המגנטי שנוצר במרכז הלולאה לא ניתן למדוד באופן ישיר. בניסוי זה אנו מסתמכים על הקשר הישר/ההפוך שקיים בין עוצמת השדה המגנטי / כיוון השדה / המגנטי שנוצר בלולאה, לבין טנגנס זווית הסטייה של מחט המצפן / השדה המגנטי של כדור הארץ זווית הסטייה של מחט המצפן. לאחר מדידת ערכי זרם ומדידת זווית הסטייה של מחט המצפן, העלה תלמיד את הגרף הבא: שאלה 10 א. התלמיד רשם כותרת לגרף ולצירים. האם הכותרות מדויקות? מה היה אמור לכתוב בכותרות? כותרת הגרף צריכה להיות: תלות טנגנס סטיית מחט המצפן בזרם הכריכה. )מספר הכריכות קבוע(. הכותרת של המשתנה התלוי הייתה צריכה להיות: טנגנס זווית הסטייה של מחט המצפן.

9 ב. ציר המספרים של הזרם מכוון שמאלה. האם צורת הגשה זו תיקנית? כתבו כיצד ניתן לשנות את כיוון הציר. יש לסמן את ציר המספרים האופקי, כפתור ימני בעכבר- עריכת ציר X ולהוריד את הסימן וי בתפריט - היפוך ציר. ג. בגרף ניתן לראות כי זווית הסטייה המקסימלית של מחט המצפן שמדד התלמיד קטנה מ- 45 מעלות )טנגנס של 45 מעלות שווה ל 1(, למרות שזווית הסטייה יכולה להגיע לסטיות גדולות יותר. האם שיקול הדעת של התלמיד, שלא למדוד את כל תחום המדידה האפשרי, מוצדק? הסבירו. בכל ניסוי פיזיקלי, נרצה למדוד על פני תחום רחב ככל האפשרי מבחינה הנדסית, כדי לבדוק שהתאוריה שלנו נכונה לתחום רחב. במקרה של ניסוי זה, שגיאת המדידה בזווית הינה גודל קבוע, אך לא קיים יחס קבוע בין הזווית לטנגנס הזווית. בזווית גדולות שינוי קטן בזווית הוא שינוי גדול בטנגנס הזווית. זאת הסיבה שבגללה בחר התלמיד לעבוד בתחום קטן יחסית. עם זאת, לזווית של 60 מעלות. ניתן היה להגדיל את התחום יותר לפחות עד ד. הסבירו, מדוע בניסוי זה מחט המצפן לא תוכל להגיע לזווית סטייה של 90 מעלות? מחט המצפן לא תוכל להגיע לסטייה של 90 מעלות, מכיוון שרכיב השדה הארצי לא מתאפס בשום שלב. המחט תוכל להתקרב לסטייה של 90 מעלות אבל לא תגיע לערך הזה לעולם. ה. התלמיד צרף לגרף את משוואת קו המגמה של הניסוי, שממנה ניתן לראות כי הקו אינו עובר דרך ראשית הצירים. על פי התיאוריה, היה אמור הקו לעבור דרך ראשית הצירים. הסבירו את הפער בין המציאות לתיאוריה. מכיוון שקו המגמה ממצע בין הנקודות, ולכל נקודה יש שגיאת מדידה משלה, קו המגמה אינו חייב לעבור דרך כל אחת מנקודות המדידה. במקרה זה התלמיד היה צריך לאלץ את הקו לעבור דרך ראשית הצירים. אך גם במקרה זה, ניתן לראות שסטיית קו המגמה מראשית הצירים במסגרת שגיאת המדידה וניתן להתעלם מערך זה. ו. קוטר הכריכה המעגלית בניסוי של התלמיד היה שווה ל- 18 ס"מ. הסבירו, כיצד ניתן לחשב את גודל הרכיב האופקי של השדה המגנטי הארצי מהנתונים וחשבו ערך זה.

10 שיפוע קו המגמה מייצג את היחס בין טנגנס זווית הסטייה לבין הזרם בכריכה. יחס זה שווה גם ליחס בין מקדם הפרמוביליות של הריק לבין מכפלת קוטר הכריכה ברכיב השדה המגנטי הארצי. מתוך השוואת ערכים אלו ניתן לחשב את הרכיב האופקי של השדה הארצי והוא שווה ל 2.62 כפול עשר בחזקת מינוס חמש טסלה. שאלה 11 אילו היה התלמיד משתמש בלולאה מעגלית בעלת רדיוס גדול יותר,האם וכיצד היה הדבר משפיע על הגרף שהוא קיבל? אילו רדיוס הלולאה המעגלית היה גדול יותר, הוא היה גורם להקטנת השדה המגנטי שיוצרת הכריכה וכתוצאה מכך, סטיית מחט המצפן היתה קטנה. בעקבות כך, שיפוע הגרף המתקבל היה קטן יותר. שינוי רדיוס הלולאה לא משפיע על גודלו של השדה המגנטי הארצי. שאלה 12 שימו לב: בזמן הרכבת המעגל ובמהלך הניסוי, יש להקפיד על כך שהגלוונומטר עם הלולאה סביבו יימצא הרחק ככל האפשר מרכיבי המעגל האחרים ומעצמים עשויים ברזל. לולאת המכשיר עשויה אלומיניום. חשבו ונסו להסביר, מדוע? חשבו ונסו להסביר, מדוע? כידוע אלמנט נושא זרם יוצר שדה מגנטי. שדה זה יכול להשפיע על תוצאות הניסוי שלנו. גופים העשויים ברזל יכולים להשפיע על השדה המגנטי המקומי ולכן נרצה להרחיק אותם מאזור הניסוי. זאת הסיבה למה הכריכה של המכשיר בנויה מאלומיניום. שאלה 13 האם נוכל לבצע את אותו הניסוי )למדידת הרכיב האופקי של השדה המגנטי הארצי( באחד מקטבי כדוה"א? נמקו. בקוטב של כדור הארץ הרכיב האופקי של השדה הארצי קטן עד זניח, ולכן מחט המצפן תראה ישירות את כיוון השדה שנוצר מכריכות הזרם.

11 שאלה 14 את מערכת הניסוי ניתן באופן תיאורטי לנצל כמכשיר המודד זרם. הסבירו, כיצד ניתן להשתמש במכשיר זה כמודד זרם? מנו לפחות שלושה חסרונות לשימוש במכשיר זה כמכשיר למדידת זרם. מתוך הגרף שקיבלנו, ניתן לחשב את הזרם בכריכות לכל זווית סטייה של מחט המצפן. ניתן לכייל את זוויות המצפן לערכים של עוצמת הזרם בכריכות.חסרונות: 1. המכשיר חייב להיות מוצב מאוזן. אי דיוק באיפוס המצפן עלול לגרום לשגיאות אקראיות במדידה. 2. שדות חיצוניים נוספים בסביבת הניסוי עלולים לשבש את הקריאה. 3. כדי למדוד זרם בעזרת המכשיר יש לדעת את גודל הרכיב האופקי של השדה המגנטי של כדה"א. ערך זה אינו קבוע ומושפע מגורמים רבים )כמו מיקום המדידה( ולכן מדידת הזרם אינה אמינה לחלוטין. שאלה 15 מדוע, לדעתכם, נקרא מכשיר זה )המבוסס על מערכת הניסוי למדידת זרם( בשם " גלוונומטר טנגנטי "? מכשיר זה מנצל את היחס הישר בין טנגנס זווית הסטיה לעוצמת הזרם בכריכות כדי למדוד זרם.

מטרות הניסוי: רקע תאורטי: 1. חקירת התלות של עוצמת השדה המגנטי, שנוצר במרכז לולאה מעגלית נושאת זרם בשני פרמטרים: א.

מטרות הניסוי: רקע תאורטי: 1. חקירת התלות של עוצמת השדה המגנטי, שנוצר במרכז לולאה מעגלית נושאת זרם בשני פרמטרים: א. מטרות הניסוי: 1. חקירת התלות של עוצמת השדה המגנטי, שנוצר במרכז לולאה מעגלית נושאת זרם בשני פרמטרים: א. ב. עוצמת הזרם הזורם בלולאה, כאשר מספר הכריכות קבוע. מספר הכריכות של הלולאה, כאשר עוצמת הזרם קבועה.

Διαβάστε περισσότερα

מה נשמר קבוע? מה מחשבים?

מה נשמר קבוע? מה מחשבים? שם הניסוי:גלוונומטר טנגנטי מדידת הרכיב האופקי של השדה המגנטי של כדור הארץ רמה א' תיאור הניסוי בניסוי זה, נעסוק בתלות של השדה המגנטי במרכז לולאה בזרם החשמלי הזורם דרכה. נמדוד את כוונו של שדה מגנטי שקול

Διαβάστε περισσότερα

שאלה 1 V AB פתרון AB 30 R3 20 R

שאלה 1 V AB פתרון AB 30 R3 20 R תרגילים בתורת החשמל כתה יג שאלה א. חשב את המתח AB לפי משפט מילמן. חשב את הזרם בכל נגד לפי המתח שקיבלת בסעיף א. A 60 0 8 0 0.A B 8 60 0 0. AB 5. v 60 AB 0 0 ( 5.) 0.55A 60 א. פתרון 0 AB 0 ( 5.) 0 0.776A

Διαβάστε περισσότερα

החשמלי השדה הקדמה: (אדום) הוא גוף הטעון במטען q, כאשר גוף B, נכנס אל תוך התחום בו השדה משפיע, השדה מפעיל עליו כוח.

החשמלי השדה הקדמה: (אדום) הוא גוף הטעון במטען q, כאשר גוף B, נכנס אל תוך התחום בו השדה משפיע, השדה מפעיל עליו כוח. החשמלי השדה הקדמה: מושג השדה חשמלי נוצר, כאשר הפיזיקאי מיכאל פרדיי, ניסה לתת הסבר אינטואיטיבי לעובדה שמטענים מפעילים זה על זה כוחות ללא מגע ביניהם. לטענתו, כל עצם בעל מטען חשמלי יוצר מסביבו שדה המשתרע

Διαβάστε περισσότερα

פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur

פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur פתרון תרגיל --- 5 מרחבים וקטורים דוגמאות למרחבים וקטורים שונים מושגים בסיסיים: תת מרחב צירוף לינארי x+ y+ z = : R ) בכל סעיף בדקו האם הוא תת מרחב של א } = z = {( x y z) R x+ y+ הוא אוסף הפתרונות של המערכת

Διαβάστε περισσότερα

חלק: א' הדו"ח מוגש על ידי: פומרנץ ישי קישון איתי ת.ז. שם משפחה שם פרטי ת.ז. שם משפחה שם פרטי 1 X 02 סמסטר ב' תשס"א שם הבודק : תאריך הבדיקה:

חלק: א' הדוח מוגש על ידי: פומרנץ ישי קישון איתי ת.ז. שם משפחה שם פרטי ת.ז. שם משפחה שם פרטי 1 X 02 סמסטר ב' תשסא שם הבודק : תאריך הבדיקה: דו"ח מסכם בניסוי: חלק: א' מגנטיות סמסטר ב' תשס"א שם הבודק : תאריך הבדיקה: I שם מדריך הניסוי (שם מלא): אריאל ציון הדו"ח: II תאריך ביצוע הניסוי: 30/04/00 תאריך הגשת הדו"ח: 7/05/00 הדו"ח מוגש על ידי: II I

Διαβάστε περισσότερα

גבול ורציפות של פונקציה סקלרית שאלות נוספות

גבול ורציפות של פונקציה סקלרית שאלות נוספות 08 005 שאלה גבול ורציפות של פונקציה סקלרית שאלות נוספות f ( ) f ( ) g( ) f ( ) ו- lim f ( ) ו- ( ) (00) lim ( ) (00) f ( בסביבת הנקודה (00) ) נתון: מצאו ) lim g( ( ) (00) ננסה להיעזר בכלל הסנדביץ לשם כך

Διαβάστε περισσότερα

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשעד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, 635865 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1. סדרה חשבונית שיש בה n איברים...2 3. האיבר

Διαβάστε περισσότερα

שאלה 3. b a I(A) α(deg) 10 cm

שאלה 3. b a I(A) α(deg) 10 cm שאלה 1 תרגילי חזרה במגנטיות בתוך שדה מגנטי אחיד B שרויה הצלע התחתונה (שאורכה ( L של מעגל חשמלי מלבני. המעגל החשמלי מורכב מסוללה ומסגרת מלבנית מוליכה שזורם בה זרם i. המעגל החשמלי תלוי בצד אחד של מאזניים

Διαβάστε περισσότερα

PDF created with pdffactory trial version

PDF created with pdffactory trial version הקשר בין שדה חשמלי לפוטנציאל חשמלי E נחקור את הקשר, עבור מקרה פרטי, בו יש לנו שדה חשמלי קבוע. נתון שדה חשמלי הקבוע במרחב שגודלו שווה ל. E נסמן שתי נקודות לאורך קו שדה ו המרחק בין הנקודות שווה ל x. המתח

Διαβάστε περισσότερα

תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשע"ב זהויות טריגונומטריות

תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשעב זהויות טריגונומטריות תרגול חזרה זהויות טריגונומטריות si π α) si α π α) α si π π ), Z si α π α) t α cot π α) t α si α cot α α α si α si α + α siα ± β) si α β ± α si β α ± β) α β si α si β si α si α α α α si α si α α α + α si

Διαβάστε περισσότερα

תרגילים באמצעות Q. תרגיל 2 CD,BF,AE הם גבהים במשולש .ABC הקטעים. ABC D נמצאת על המעגל בין A ל- C כך ש-. AD BF ABC FME

תרגילים באמצעות Q. תרגיל 2 CD,BF,AE הם גבהים במשולש .ABC הקטעים. ABC D נמצאת על המעגל בין A ל- C כך ש-. AD BF ABC FME הנדסת המישור - תרגילים הכנה לבגרות תרגילים הנדסת המישור - תרגילים הכנה לבגרות באמצעות Q תרגיל 1 מעגל העובר דרך הקודקודים ו- של המקבילית ו- חותך את האלכסונים שלה בנקודות (ראה ציור) מונחות על,,, הוכח כי

Διαβάστε περισσότερα

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון.

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון. Charles Augustin COULOMB (1736-1806) קולון חוק חוקקולון, אשרנקראעלשםהפיזיקאיהצרפתישארל-אוגוסטיןדהקולוןשהיהאחדהראשוניםשחקרבאופןכמותיאתהכוחותהפועלים ביןשניגופיםטעונים. מדידותיוהתבססועלמיתקןהנקראמאזניפיתול.

Διαβάστε περισσότερα

גלים א. חיבור שני גלים ב. חיבור N גלים ג. גלים מונוכרומטיים וגלים קוהרנטיים ד. זרם העתקה ה. משוואות מקסוול ו. גלים אלקטרומגנטיים

גלים א. חיבור שני גלים ב. חיבור N גלים ג. גלים מונוכרומטיים וגלים קוהרנטיים ד. זרם העתקה ה. משוואות מקסוול ו. גלים אלקטרומגנטיים גלים א. חיבור שני גלים ב. חיבור גלים ג. גלים מונוכרומטיים וגלים קוהרנטיים ד. זרם העתקה ה. משוואות מקסוול ו. גלים אלקטרומגנטיים םילג ינש רוביח ו Y Y,הדוטילפמא התוא ילעב :לבא,,, ( ( Y Y ןוויכ ותואב םיענ

Διαβάστε περισσότερα

בכל החלקים לפני חיבור המעגל יש לקבל אישור מהמדריך. מעגלים חשמליים- תדריך עבודה

בכל החלקים לפני חיבור המעגל יש לקבל אישור מהמדריך. מעגלים חשמליים- תדריך עבודה הערה: שימו לב ששגיאת המכשירים הדיגיטאליים שאיתם עובדים בניסוי משתנה בין סקאלות ותלויה גם בערכים הנמדדים לכן יש להימנע ממעבר סקאלה במהלך המדידה )למעט במד ההתנגדות בחלק ב'( ובכל מקרה לרשום בכל מדידה באיזה

Διαβάστε περισσότερα

מורה יקר! שים לב, התשובות הנכונות מסומנות באדום!

מורה יקר! שים לב, התשובות הנכונות מסומנות באדום! מורה יקר! שים לב, התשובות הנכונות מסומנות באדום! בניסוי זה תשחררו ממנוחה שני גלילים על גבי מסילה משופעת העשויה אלומיניום, גליל אחד עשוי חומר מתכתי והאחר עשוי מחומר מגנטי. לכאורה, שני הגלילים אמורים לבצע

Διαβάστε περισσότερα

= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin(

= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin( א. s in(0 c os(0 s in(60 c os(0 s in(0 c os(0 s in(0 c os(0 s in(0 0 s in(70 מתאים לזהות של cos(θsin(φ : s in(θ φ s in(θcos(φ sin ( π cot ( π cos ( 4πtan ( 4π sin ( π cos ( π sin ( π cos ( 4π sin ( 4π

Διαβάστε περισσότερα

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם תזכורת: פולינום ממעלה או מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה p f ( m i ) = p m1 m5 תרגיל: נתון עבור x] f ( x) Z[ ראשוני שקיימים 5 מספרים שלמים שונים שעבורם p x f ( x ) f ( ) = נניח בשלילה ש הוא

Διαβάστε περισσότερα

פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( )

פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( ) פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד a d U c M ( יהי b (R) a b e ל (R M ( (אין צורך להוכיח). מצאו קבוצה פורשת ל. U בדקו ש - U מהווה תת מרחב ש a d U M (R) Sp,,, c a e

Διαβάστε περισσότερα

[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m

[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m Observabiliy, Conrollabiliy תרגול 6 אובזרווביליות אם בכל רגע ניתן לשחזר את ( (ומכאן גם את המצב לאורך זמן, מתוך ידיעת הכניסה והיציאה עד לרגע, וזה עבור כל צמד כניסה יציאה, אז המערכת אובזרוובילית. קונטרולביליות

Διαβάστε περισσότερα

תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן.

תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשעא, מיום 31/1/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן. בB בB תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: 035804 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1 מכונית נסעה מעיר A לעיר B על כביש ראשי

Διαβάστε περισσότερα

חורף תש''ע פתרון בחינה סופית מועד א'

חורף תש''ע פתרון בחינה סופית מועד א' מד''ח 4 - חורף תש''ע פתרון בחינה סופית מועד א' ( u) u u u < < שאלה : נתונה המד''ח הבאה: א) ב) ג) לכל אחד מן התנאים המצורפים בדקו האם קיים פתרון יחיד אינסוף פתרונות או אף פתרון אם קיים פתרון אחד או יותר

Διαβάστε περισσότερα

פתרון מבחן פיזיקה 5 יח"ל טור א' שדה מגנטי ורמות אנרגיה פרק א שדה מגנטי (100 נקודות)

פתרון מבחן פיזיקה 5 יחל טור א' שדה מגנטי ורמות אנרגיה פרק א שדה מגנטי (100 נקודות) שאלה מספר 1 פתרון מבחן פיזיקה 5 יח"ל טור א' שדה מגנטי ורמות אנרגיה פרק א שדה מגנטי (1 נקודות) על פי כלל יד ימין מדובר בפרוטון: האצבעות מחוץ לדף בכיוון השדה המגנטי, כף היד ימינה בכיוון הכוח ולכן האגודל

Διαβάστε περισσότερα

דינמיקה כוחות. N = kg m s 2 מתאפסת.

דינמיקה כוחות. N = kg m s 2 מתאפסת. דינמיקה כאשר אנו מנתחים תנועה של גוף במושגים של מיקום, מהירות ותאוצה כפי שעשינו עד כה, אנו מדלגים על ניתוח הכוחות הפועלים על הגוף. כוחות אלו ומסתו של הגוף הם אשר קובעים את תאוצתו. על מנת לקבל קשר בין הכוחות

Διαβάστε περισσότερα

פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד

פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשעד פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. לכל אחת מן הפונקציות הבאות, קבעו אם היא חח"ע ואם היא על (הקבוצה המתאימה) (א) 3} {1, 2, 3} {1, 2, : f כאשר 1 } 1, 3, 3, 3, { 2, = f לא חח"ע: לדוגמה

Διαβάστε περισσότερα

תרגיל 13 משפטי רול ולגראנז הערות

תרגיל 13 משפטי רול ולגראנז הערות Mthemtics, Summer 20 / Exercise 3 Notes תרגיל 3 משפטי רול ולגראנז הערות. האם קיים פתרון למשוואה + x e x = בקרן )?(0, (רמז: ביחרו x,f (x) = e x הניחו שיש פתרון בקרן, השתמשו במשפט רול והגיעו לסתירה!) פתרון

Διαβάστε περισσότερα

אוסף שאלות מס. 3 פתרונות

אוסף שאלות מס. 3 פתרונות אוסף שאלות מס. 3 פתרונות שאלה מצאו את תחום ההגדרה D R של כל אחת מהפונקציות הבאות, ושרטטו אותו במישור. f (x, y) = x + y x y, f 3 (x, y) = f (x, y) = xy x x + y, f 4(x, y) = xy x y f 5 (x, y) = 4x + 9y 36,

Διαβάστε περισσότερα

מחוון פתרון לתרגילי חזרה באלקטרומגנטיות קיץ תשס"ז. V=ε R

מחוון פתרון לתרגילי חזרה באלקטרומגנטיות קיץ תשסז. V=ε R מחוון פתרון לתרגילי חזרה באלקטרומגנטיות קיץ תשס"ז v שאלה א. המטען חיובי, כוון השדה בין הלוחות הוא כלפי מעלה ולכן המטען נעצר. עד כניסת החלקיק לבין לוחות הקבל הוא נע בנפילה חופשית. בין הלוחות החלקיק נע בתאוצה

Διαβάστε περισσότερα

יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012)

יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 6 נושא: תחשיב הפסוקים: הפונקציה,val גרירה לוגית, שקילות לוגית 1. כיתבו טבלאות אמת לפסוקים הבאים: (ג) r)).((p q) r) ((p r) (q p q r (p

Διαβάστε περισσότερα

חשמל ומגנטיות תשע"ה תרגול 9 שדה מגנטי ומומנט דיפול מגנטי

חשמל ומגנטיות תשעה תרגול 9 שדה מגנטי ומומנט דיפול מגנטי חשמל ומגנטיות תשע"ה תרגול 9 שדה מגנטי ומומנט דיפול מגנטי השדה המגנטי נוצר כאשר יש תנועה של חלקיקים טעונים בגלל אפקט יחסותי. תופעת השדה המגנטי התגלתה קודם כל בצורה אמפירית והוסברה רק בתחילת המאה ה 20 על

Διαβάστε περισσότερα

3-9 - a < x < a, a < x < a

3-9 - a < x < a, a < x < a 1 עמוד 59, שאלהמס', 4 סעיףג' תיקוני הקלדה שאלון 806 צריך להיות : ג. מצאאתמקומושלאיברבסדרהזו, שקטןב- 5 מסכוםכלהאיבריםשלפניו. עמוד 147, שאלהמס' 45 ישלמחוקאתהשאלה (מופיעהפעמיים) עמוד 184, שאלהמס', 9 סעיףב',תשובה.

Διαβάστε περισσότερα

פיזיקה מבחן מתכונת בחשמל ומגנטיות לתלמידי 5 יחידות לימוד הוראות לנבחן

פיזיקה מבחן מתכונת בחשמל ומגנטיות לתלמידי 5 יחידות לימוד הוראות לנבחן מאי 2011 קרית חינוך אורט קרית ביאליק פיזיקה מבחן מתכונת בחשמל ומגנטיות לתלמידי 5 יחידות לימוד הוראות לנבחן א. משך הבחינה: שעה ושלושה רבעים (105 דקות) ב. מבנה השאלון ומפתח ההערכה: בשאלון זה חמש שאלות, ומהן

Διαβάστε περισσότερα

דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות

דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות 1. מצאו צורה דיסיונקטיבית נורמלית קנונית לפסוקים הבאים: (ג)

Διαβάστε περισσότερα

תרגיל 7 פונקציות טריגונומטריות הערות

תרגיל 7 פונקציות טריגונומטריות הערות תרגיל 7 פונקציות טריגונומטריות הערות. פתרו את המשוואות הבאות. לא מספיק למצוא פתרון אחד יש למצוא את כולם! sin ( π (א) = x sin (ב) = x cos (ג) = x tan (ד) = x) (ה) = tan x (ו) = 0 x sin (x) + sin (ז) 3 =

Διαβάστε περισσότερα

סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור

סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 5 שנכתב על-ידי מאיר בכור. חקירת משוואה מהמעלה הראשונה עם נעלם אחד = הצורה הנורמלית של המשוואה, אליה יש להגיע, היא: b

Διαβάστε περισσότερα

תרגול פעולות מומצאות 3

תרגול פעולות מומצאות 3 תרגול פעולות מומצאות. ^ = ^ הפעולה החשבונית סמן את הביטוי הגדול ביותר:. ^ ^ ^ π ^ הפעולה החשבונית c) #(,, מחשבת את ממוצע המספרים בסוגריים.. מהי תוצאת הפעולה (.7,.0,.)#....0 הפעולה החשבונית משמשת חנות גדולה

Διαβάστε περισσότερα

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx דפי נוסחאות I גבולות נאמר כי כך שלכל δ קיים > ε לכל > lim ( ) L המקיים ( ) מתקיים L < ε הגדרת הגבול : < < δ lim ( ) lim ורק ( ) משפט הכריך (סנדוויץ') : תהיינה ( ( ( )g ( )h פונקציות המוגדרות בסביבה נקובה

Διαβάστε περισσότερα

gcd 24,15 = 3 3 =

gcd 24,15 = 3 3 = מחלק משותף מקסימאלי משפט אם gcd a, b = g Z אז קיימים x, y שלמים כך ש.g = xa + yb במלים אחרות, אם ה כך ש.gcd a, b = xa + yb gcd,a b של שני משתנים הוא מספר שלם, אז קיימים שני מקדמים שלמים כאלה gcd 4,15 =

Διαβάστε περισσότερα

ל הזכויות שמורות לדפנה וסטרייך

ל הזכויות שמורות לדפנה וסטרייך מרובע שכל זוג צלעות נגדיות בו שוות זו לזו נקרא h באיור שלעיל, הצלעות ו- הן צלעות נגדיות ומתקיים, וכן הצלעות ו- הן צלעות נגדיות ומתקיים. תכונות ה כל שתי זוויות נגדיות שוות זו לזו. 1. כל שתי צלעות נגדיות

Διαβάστε περισσότερα

אלקטרומגנטיות אנליטית תירגול #2 סטטיקה

אלקטרומגנטיות אנליטית תירגול #2 סטטיקה Analytical Electromagnetism Fall Semester 202-3 אלקטרומגנטיות אנליטית תירגול #2 סטטיקה צפיפויות מטען וזרם צפיפות מטען נפחית ρ מוגדרת כך שאינטגרל נפחי עליה נותן את המטען הכולל Q dv ρ היחידות של ρ הן מטען

Διαβάστε περισσότερα

תרשים 1 מבוא. I r B =

תרשים 1 מבוא. I r B = שדה מגנטי של תיל נושא זרם מבוא תרשים 1 השדה המגנטי בקרבת תיל ארוך מאד נושא זרם נתון על ידי: μ0 B = 2 π I r כאשר μ o היא פרמיאביליות הריק, I הזרם הזורם בתיל ו- r המרחק מהתיל. 111 בניסוי זה נשתמש בחיישן

Διαβάστε περισσότερα

הרצאה 7 טרנזיסטור ביפולרי BJT

הרצאה 7 טרנזיסטור ביפולרי BJT הרצאה 7 טרנזיסטור ביפולרי JT תוכן עניינים: 1. טרנזיסטור ביפולרי :JT מבנה, זרם, תחומי הפעולה..2 מודל: S MOLL (אברסמול). 3. תחומי הפעולה של הטרנזיסטור..1 טרנזיסטור ביפולרי.JT מבנה: PNP NPN P N N P P N PNP

Διαβάστε περισσότερα

-107- גיאומטריה זוויות מבוא מטרתנו בפרק זה היא לחזור על המושגים שנלמדו ולהעמיק את הלימוד בנושא זה.

-107- גיאומטריה זוויות מבוא מטרתנו בפרק זה היא לחזור על המושגים שנלמדו ולהעמיק את הלימוד בנושא זה. -07- בשנים קודמות למדתם את נושא הזוויות. גיאומטריה זוויות מבוא מטרתנו בפרק זה היא לחזור על המושגים שנלמדו ולהעמיק את הלימוד בנושא זה. זווית נוצרת על-ידי שתי קרניים היוצאות מנקודה אחת. הנקודה נקראת קדקוד

Διαβάστε περισσότερα

שאלה 13 הזרם. נקודות) /V (1/Volt)

שאלה 13 הזרם. נקודות) /V (1/Volt) שאלה 13 למקור מתח בעל כא"מ ε והתנגדות פנימית לכל נורה התנגדות הזרם. L. בפתרונך הנח כי ההתנגדות r מחוברות במקביל n נורות זהות. L א. רשום ביטוי של מתח הדקי המקור V באמצעות, r ε, קבועה ואינה תלויה בעוצמת

Διαβάστε περισσότερα

B d s. (displacement current) זרם תזוזה או העתקה, האם חוק אמפר שגוי לגבי מצב זה?

B d s. (displacement current) זרם תזוזה או העתקה, האם חוק אמפר שגוי לגבי מצב זה? זרם תזוזה או העתקה, נתבונן בטעינה של קבל לוחות מקבילים ונשתמש בחוק אמפר כדי לחשב שדה מגנטי. עבור משטח S 1 נקבל (displacement current) d s i d s ועבור משטח S נקבל האם חוק אמפר שגוי לגבי מצב זה? בין לוחות

Διαβάστε περισσότερα

ניהול תמיכה מערכות שלבים: DFfactor=a-1 DFt=an-1 DFeror=a(n-1) (סכום _ הנתונים ( (מספר _ חזרות ( (מספר _ רמות ( (סכום _ ריבועי _ כל _ הנתונים (

ניהול תמיכה מערכות שלבים: DFfactor=a-1 DFt=an-1 DFeror=a(n-1) (סכום _ הנתונים ( (מספר _ חזרות ( (מספר _ רמות ( (סכום _ ריבועי _ כל _ הנתונים ( תכנון ניסויים כאשר קיימת אישביעות רצון מהמצב הקיים (למשל כשלים חוזרים בבקרת תהליכים סטטיסטית) נחפש דרכים לשיפור/ייעול המערכת. ניתן לבצע ניסויים על גורם בודד, שני גורמים או יותר. ניסויים עם גורם בודד: נבצע

Διαβάστε περισσότερα

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות 25 בדצמבר 2016 תזכורת: תהי ) n f ( 1, 2,..., פונקציה המוגדרת בסביבה של f. 0 גזירה חלקית לפי משתנה ) ( = 0, אם קיים הגבול : 1 0, 2 0,..., בנקודה n 0 i f(,..,n,).lim

Διαβάστε περισσότερα

"קשר-חם" : לקידום שיפור וריענון החינוך המתמטי

קשר-חם : לקידום שיפור וריענון החינוך המתמטי הטכניון - מכון טכנולוגי לישראל המחלקה להוראת הטכנולוגיה והמדעים "קשר-חם" : לקידום שיפור וריענון החינוך המתמטי נושא: חקירת משוואות פרמטריות בעזרת גרפים הוכן ע"י: אביבה ברש. תקציר: בחומר מוצגת דרך לחקירת

Διαβάστε περισσότερα

תרגול מס' 6 פתרון מערכת משוואות ליניארית

תרגול מס' 6 פתרון מערכת משוואות ליניארית אנליזה נומרית 0211 סתיו - תרגול מס' 6 פתרון מערכת משוואות ליניארית נרצה לפתור את מערכת המשוואות יהי פתרון מקורב של נגדיר את השארית: ואת השגיאה: שאלה 1: נתונה מערכת המשוואות הבאה: הערך את השגיאה היחסית

Διαβάστε περισσότερα

קיום ויחידות פתרונות למשוואות דיפרנציאליות

קיום ויחידות פתרונות למשוואות דיפרנציאליות קיום ויחידות פתרונות למשוואות דיפרנציאליות 1 מוטיבציה למשפט הקיום והיחידות אנו יודעים לפתור משוואות דיפרנציאליות ממחלקות מסוימות, כמו משוואות פרידות או משוואות לינאריות. עם זאת, קל לכתוב משוואה דיפרנציאלית

Διαβάστε περισσότερα

(ספר לימוד שאלון )

(ספר לימוד שאלון ) - 40700 - פתרון מבחן מס' 7 (ספר לימוד שאלון 035804) 09-05-2017 _ ' i d _ i ' d 20 _ i _ i /: ' רדיוס המעגל הגדול: רדיוס המעגל הקטן:, לכן שטח העיגול הגדול: / d, לכן שטח העיגול הקטן: ' d 20 4 D 80 Dd 4 /:

Διαβάστε περισσότερα

הקימנידורטקלאה תודוסי (ךשמה)

הקימנידורטקלאה תודוסי (ךשמה) יסודות האלקטרודינמיקה (המשך) נמשיך בלימודי האלקטרודינמיקה, ונכיר שדות מגנטיים שאינם משתנים בזמן. נכיר גם שדות מגנטיים ושדות חשמליים המשתנים בזמן. התוודענו לשדות חשמליים שאינם משתנים בזמן. כזכור, בספרנו

Διαβάστε περισσότερα

מצולעים מצולעהוא צורה דו ממדית,עשויה קו"שבור"סגור. לדוגמה: משולש, מרובע, מחומש, משושה וכו'. לדוגמה:בסרטוט שלפappleיכם EC אלכסוןבמצולע.

מצולעים מצולעהוא צורה דו ממדית,עשויה קושבורסגור. לדוגמה: משולש, מרובע, מחומש, משושה וכו'. לדוגמה:בסרטוט שלפappleיכם EC אלכסוןבמצולע. גיאומטריה מצולעים מצולעים מצולעהוא צורה דו ממדית,עשויה קו"שבור"סגור. לדוגמה: משולש, מרובע, מחומש, משושה וכו'. אלכסון במצולע הוא הקו המחבר בין שappleי קדקודים שאיappleם סמוכים זה לזה. לדוגמה:בסרטוט שלפappleיכם

Διαβάστε περισσότερα

שאלה 1 נתון: (AB = AC) ABC שאלה 2 ( ) נתון. באמצעות r ו-. α שאלה 3 הוכח:. AE + BE = CE שאלה 4 האלכסון (AB CD) ABCD תשובה: 14 ס"מ = CD.

שאלה 1 נתון: (AB = AC) ABC שאלה 2 ( ) נתון. באמצעות r ו-. α שאלה 3 הוכח:. AE + BE = CE שאלה 4 האלכסון (AB CD) ABCD תשובה: 14 סמ = CD. טריגונומטריה במישור 5 יח"ל טריגונומטריה במישור 5 יח"ל 010 שאלונים 006 ו- 806 10 השאלות 1- מתאימות למיקוד קיץ = β ( = ) שאלה 1 במשולש שווה-שוקיים הוכח את הזהות נתון: sin β = sinβ cosβ r r שאלה נתון מעגל

Διαβάστε περισσότερα

חוק פאראדיי השתנות השטף המגנטי בזמן,גורמת להשראת מתח חשמלי במוליך (המתח הזה הינו כוח אלקטרו מניע או כא מ).

חוק פאראדיי השתנות השטף המגנטי בזמן,גורמת להשראת מתח חשמלי במוליך (המתח הזה הינו כוח אלקטרו מניע או כא מ). תרגול וחוק לנץ השתנות השטף המגנטי בזמן,גורמת להשראת מתח חשמלי במוליך (המתח הזה הינו כוח אלקטרו מניע או כא מ). () dφ B מצד אחד: () dφ B = d B ds ומצד שני (ממשפט סטוקס): (3) ε = E dl לכן בצורה האינטגרלית

Διαβάστε περισσότερα

דף תרגילים תנועת מטען בשדה מגנטיות

דף תרגילים תנועת מטען בשדה מגנטיות 1 דף תרגילים תנועת מטען בשדה מגנטיות תנועת מטען בשדה מגנטי בלבד וחשמלי מסת פרוטון 1.671-7 kg מסת אלקטרון 9.111-31 kg גודל מטען האלקטרון/פרוטון 1.61 19- c שאלה 1 שני חלקיקים בעלי מסה שווה אופקית וקבועה

Διαβάστε περισσότερα

אוניברסיטת תל אביב הפקולטה להנדסה ע"ש איבי ואלדר פליישמן

אוניברסיטת תל אביב הפקולטה להנדסה עש איבי ואלדר פליישמן אוניברסיטת תל אביב הפקולטה להנדסה ע"ש איבי ואלדר פליישמן מספר סידורי: מספר סטודנט: בחינה בקורס: פיזיקה משך הבחינה: שלוש שעות 1 יש לענות על כל השאלות 1 לכל השאלות משקל שווה בציון הסופי, ולכל סעיף אותו משקל

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)

לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשעו (2016) לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)............................................................................................................. חלק ראשון: שאלות שאינן להגשה 1. עבור

Διαβάστε περισσότερα

Vcc. Bead uF 0.1uF 0.1uF

Vcc. Bead uF 0.1uF 0.1uF ריבוי קבלים תוצאות בדיקה מאת: קרלוס גררו. מחלקת בדיקות EMC 1. ריבוי קבלים תוצאות בדיקה: לקחנו מעגל HLXC ובדקנו את סינון המתח על רכיב. HLX מעגל הסינון בנוי משלוש קבלים של, 0.1uF כל קבל מחובר לארבע פיני

Διαβάστε περισσότερα

:ןורטיונ וא ןוטורפ תסמ

:ןורטיונ וא ןוטורפ תסמ פרק ט' -חוק קולון m m e p = 9. 0 = m n 3 kg =.67 0 7 kg מסת אלקטרון: מסת פרוטון או נויטרון: p = e =.6 0 9 מטען אלקטרון או פרוטון: חוק קולון בין כל שני מטענים חשמליים פועל כח חשמלי. הכח תלוי ביחס ישיר למכפלת

Διαβάστε περισσότερα

שטף בהקשר של שדה וקטורי הוא "כמות" השדה הוקטורי העובר דרך משטח מסויים. שטף חשמלי מוגדר כך:

שטף בהקשר של שדה וקטורי הוא כמות השדה הוקטורי העובר דרך משטח מסויים. שטף חשמלי מוגדר כך: חוק גאוס שטף חשמלי שטף בהקשר של שדה וקטורי הוא "כמות" השדה הוקטורי העובר דרך משטח מסויים. שטף חשמלי מוגדר כך: Φ E = E d כאשר הסימון מסמל אינטגרל משטחי כלשהו (אינטגרל כפול) והביטוי בתוך האינטגרל הוא מכפלה

Διαβάστε περισσότερα

התשובות בסוף! שאלה 1:

התשובות בסוף! שאלה 1: התשובות בסוף! שאלה : בעיה באלקטרוסטטיקה: נתון כדור מוליך. חשבו את העבודה שצריך להשקיע כדי להניע יח מטען מן הנק לנק. (הנק נמצאת במרחק מהמרכז, והנק נמצאת במרחק מהמרכז). kq( ) kq ( ) לא ניתן לקבוע שאלה :

Διαβάστε περισσότερα

שדות מגנטיים של זרמים שדה מגנטי של מטען נע שדה חשמלי של מטען נקודתי

שדות מגנטיים של זרמים שדה מגנטי של מטען נע שדה חשמלי של מטען נקודתי שדות מגנטיים של זרמים שדה מגנטי של מטען נע שדה חשמלי של מטען נקודתי חוק ביו-סבר שדה מגנטי של מטען נקודתי נע (, v) ~ q 1 ~ מאונך למישור E ~ q 1 E ~ E מכוון ממטען לנקודה [ k'] qv k' 3 Tm A k'? שדה חשמלי

Διαβάστε περισσότερα

גיאומטריה גיאומטריה מצולעים ניב רווח פסיכומטרי

גיאומטריה גיאומטריה מצולעים ניב רווח פסיכומטרי מצולע הוא צורה דו ממדית, עשויה קו "שבור" סגור. לדוגמה: משולש, מרובע, מחומש, משושה וכו'. אלכסון במצולע הוא הקו המחבר בין שני קדקודים שאינם סמוכים זה לזה. לדוגמה: בסרטוט שלפניכם EC אלכסון במצולע. ABCDE (

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 5

מתמטיקה בדידה תרגול מס' 5 מתמטיקה בדידה תרגול מס' 5 נושאי התרגול: פונקציות 1 פונקציות הגדרה 1.1 פונקציה f מ A (התחום) ל B (הטווח) היא קבוצה חלקית של A B המקיימת שלכל a A קיים b B יחיד כך ש. a, b f a A.f (a) = ιb B. a, b f או, בסימון

Διαβάστε περισσότερα

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור הרצאה מס' 1. תורת הקבוצות. מושגי יסוד בתורת הקבוצות.. 1.1 הקבוצה ואיברי הקבוצות. המושג קבוצה הוא מושג בסיסי במתמטיקה. אין מושגים בסיסים יותר, אשר באמצעותם הגדרתו מתאפשרת. הניסיון והאינטואיציה עוזרים להבין

Διαβάστε περισσότερα

פתרון 4. a = Δv Δt = = 2.5 m s 10 0 = 25. y = y v = 15.33m s = 40 2 = 20 m s. v = = 30m x = t. x = x 0.

פתרון 4. a = Δv Δt = = 2.5 m s 10 0 = 25. y = y v = 15.33m s = 40 2 = 20 m s. v = = 30m x = t. x = x 0. בוחן לדוגמא בפיזיקה - פתרון חומר עזר: מחשבון ודף נוסחאות מצורף זמן הבחינה: שלוש שעות יש להקפיד על כתיבת יחידות חלק א יש לבחור 5 מתוך 6 השאלות 1. רכב נוסע במהירות. 5 m s לפתע הנהג לוחץ על דוושת הבלם והרכב

Διαβάστε περισσότερα

T 1. T 3 x T 3 בזווית, N ( ) ( ) ( ) התלוי. N mg שמאלה (כיוון

T 1. T 3 x T 3 בזווית, N ( ) ( ) ( ) התלוי. N mg שמאלה (כיוון קיץ 006 f T א. כיוון שמשקל גדול יותר של m יוביל בסופו של דבר למתיחות גדולה יותר בצידה הימני, m עלינו להביט על המצב בו פועל כוח החיכוך המקס', ז"א של : m הכוחות על הגוף במנוחה (ז"א התמדה), לכן בכל ציר הכוחות

Διαβάστε περισσότερα

-הולכה חשמלית- הולכה חשמלית

-הולכה חשמלית- הולכה חשמלית מילות מפתח: הולכה חשמלית התנגדות, וולטמטר, אמפרמטר, נגד, דיודה, אופיין, התנגדות דינמית. הציוד הדרוש: 2 רבי מודדים דגיטלים )מולטימטרים(, פלטת רכיבים, ספק, כבלים חשמליים. מטרות הניסוי: הכרת נושא ההולכה החשמלית

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים:

לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשעו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים: לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( 2016 2015 )............................................................................................................. חלק ראשון: שאלות שאינן להגשה.1

Διαβάστε περισσότερα

גמישויות. x p Δ p x נקודתית. 1,1

גמישויות. x p Δ p x נקודתית. 1,1 גמישויות הגמישות מודדת את רגישות הכמות המבוקשת ממצרך כלשהוא לשינויים במחירו, במחירי מצרכים אחרים ובהכנסה על-מנת לנטרל את השפעת יחידות המדידה, נשתמש באחוזים על-מנת למדוד את מידת השינויים בדרך כלל הגמישות

Διαβάστε περισσότερα

משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ

משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ משוואות רקורסיביות הגדרה: רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים למשל: T = Θ 1 if = 1 T + Θ if > 1 יונתן יניב, דוד וייץ 1 דוגמא נסתכל על האלגוריתם הבא למציאת

Διαβάστε περισσότερα

f ( x, y) 1 5y axy x xy ye dxdy לדוגמה: axy + + = a ay e 3 2 a e a y ( ) במישור. xy ואז dxdy למישור.xy שבסיסם dxdy וגבהם y) f( x, איור 25.

f ( x, y) 1 5y axy x xy ye dxdy לדוגמה: axy + + = a ay e 3 2 a e a y ( ) במישור. xy ואז dxdy למישור.xy שבסיסם dxdy וגבהם y) f( x, איור 25. ( + 5 ) 5. אנטגרלים כפולים., f ( המוגדרת במלבן הבא במישור (,) (ראה באיור ). נתונה פונקציה ( β α f(, ) נגדיר את הסמל הבא dd e dd 5 + e ( ) β β איור α 5. α 5 + + = e d d = 5 ( ) e + = e e β α β α f (, )

Διαβάστε περισσότερα

את כיוון המהירות. A, B

את כיוון המהירות. A, B קיץ 6 AB, B A א. וקטור שינוי המהירות (בקטע מ A ל B), עפ"י ההגדרה, הוא: (עפ"י הסימונים שבתרשים המהירות בנקודה A, למשל, היא ). נמצא וקטור זה, באופן גרפי, ונזכור כי אין משמעות למיקום הוקטורים:. (הערה עבור

Διαβάστε περισσότερα

brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק

brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק יום א 14 : 00 15 : 00 בניין 605 חדר 103 http://u.cs.biu.ac.il/ brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק 29/11/2017 1 הגדרת קבוצת הנוסחאות הבנויות היטב באינדוקציה הגדרה : קבוצת הנוסחאות הבנויות

Διαβάστε περισσότερα

תשס"ז שאלות מהחוברת: שאלה 1: 3 ס"מ פתרון: = = F r 03.0 שאלה 2: R פתרון: F 2 = 1 10

תשסז שאלות מהחוברת: שאלה 1: 3 סמ פתרון: = = F r 03.0 שאלה 2: R פתרון: F 2 = 1 10 Q 0 חוק קולון: שאלות מהחוברת: שאלה : פיזיקה למדעי החיים פתרון תרגיל 5 חוק קולון,שדה חשמלי ופוטנציאל חשמלי ו- Q 5 0 Q Q 3 ס"מ חשב את הכוח החשמלי הפועל בין שני מטענים נקודתיים הנמצאים במרחק 3 ס"מ זה מזה.

Διαβάστε περισσότερα

המטרה התיאוריה קיטוב תמונה 1: גל א מ

המטרה התיאוריה קיטוב תמונה 1: גל א מ חקירת קיטוב האור חוק מאלוס (Malus) שם קובץ הניסוי: Malus Law.ds חוברת מס' 8 כרך: גלים ואופטיקה מאת: משה גלבמן קיטוב האור חוק מאלוס (Malus) המטרה לחקור את התלות של עוצמת האור שעוברת דרך זוג מקטבים הצירים

Διαβάστε περισσότερα

דיאגמת פאזת ברזל פחמן

דיאגמת פאזת ברזל פחמן דיאגמת פאזת ברזל פחמן הריכוז האוטקטי הריכוז האוטקטוידי גבול המסיסות של פריט היווצרות פרליט מיקרו-מבנה של החומר בפלדה היפר-אוטקטואידית והיפו-אוטקטוידית. ככל שמתקרבים יותר לריכוז האוטקטואידי, מקבלים מבנה

Διαβάστε περισσότερα

סיכום- בעיות מינימוםמקסימום - שאלון 806

סיכום- בעיות מינימוםמקסימום - שאלון 806 סיכום- בעיות מינימוםמקסימום - שאלון 806 בבעיותמינימום מקסימוםישלחפשאתנקודותהמינימוםהמוחלטוהמקסימוםהמוחלט. בשאלות מינימוםמקסימוםחובהלהראותבעזרתטבלה אובעזרתנגזרתשנייהשאכן מדובר עלמינימוםאומקסימום. לצורךקיצורהתהליך,

Διαβάστε περισσότερα

קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים.

קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים. א{ www.sikumuna.co.il מהי קבוצה? קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים. קבוצה היא מושג יסודי במתמטיקה.התיאור האינטואיטיבי של קבוצה הוא אוסף של עצמים כלשהם. העצמים הנמצאים בקבוצה הם איברי הקבוצה.

Διαβάστε περισσότερα

שדות מגנטיים תופעות מגנטיות

שדות מגנטיים תופעות מגנטיות שדות מגנטיים תופעות מגנטיות תופעות מגנטיות ראשונות נתגלו עוד במאה השמינית לפני ספירת הנוצרים, ביוון. התגלה כי מינרל בשם מגנטיט )תחמוצת של ברזל( מסוגל למשוך איליו פיסות ברזל או למשוך או לדחוף פיסת מגנטיט

Διαβάστε περισσότερα

Data Studio. AC1_Circuit_R.ds כרך : חשמל

Data Studio. AC1_Circuit_R.ds כרך : חשמל טל': 03-5605536 פקס: www.shulan-sci.co.il 03-5660340 מעגל זרם חילופין - 1 למעגל יש רק התנגדות - R Data Studio שם קובץ הניסוי: AC1_Circuit_R.ds חוברת מס' 8 כרך : חשמל מאת: משה גלבמן טל': 03-5605536 פקס:

Διαβάστε περισσότερα

יתרואת עקר יאטל - וו וטופ את

יתרואת עקר יאטל - וו וטופ את מיקוד במעבדה בפיסיקה 9 רקע תאורתי קיטוב האור E אור מקוטב אור טבעי גל אלקרומגנטי הוא גל המורכב משדה חשמלי B ושדה מגנטי המאונכים זה לזה לכן.1 וקטור השדה החשמלי ווקטור ההתקדמות יוצרים מישור קבוע שנקרא מישור

Διαβάστε περισσότερα

חשמל לתלמידי 5 יחידות לימוד הוראות לנבחן = נקודות

חשמל לתלמידי 5 יחידות לימוד הוראות לנבחן = נקודות בגרות לבתי ספר על יסודיים א. סוג הבחינה: מדינת ישראל בגרות לנבחנים אקסטרניים ב. משרד החינוך קיץ תשס"ז, 2007 מועד הבחינה: 652 917521, מספר השאלון: נתונים ונוסחאות בפיזיקה ל 5 יח"ל נספח: פ י ז י ק ה חשמל

Διαβάστε περισσότερα

גיאומטריה גיאומטריה מעגלים ניב רווח פסיכומטרי

גיאומטריה גיאומטריה מעגלים ניב רווח פסיכומטרי מושגים בסיסיים: פאי: π היא אות יוונית המביעה את הקשר בין רדיוס וקוטר המעגל לשטחו והיקפו (על הקשר עצמו נרחיב בהמשך). ערכו המספרי של π הוא 3.14 בבחינה הפסיכומטרית לרוב נתייחס ל- π בקירוב (הוא ממשיך אין-סוף

Διαβάστε περισσότερα

תרגיל 3 שטף חשמלי ומשפט גאוס

תרגיל 3 שטף חשמלי ומשפט גאוס תרגיל שטף חשמלי ומשפט גאוס הערה: אינטגרלים חיוניים מוצגים בסוף הדף 1. כדור שמסתו.5 g ומטענו 1 6- C תלוי בחוט שאורכו 1 m ונמצא בשדה חשמלי של לוח אינסופי. החוט נפרש בזווית של 1 לכיוון הלוח. מה צפיפות המטען

Διαβάστε περισσότερα

תרגול #10 מרכז מסה, מומנט התמד ומומנט כח

תרגול #10 מרכז מסה, מומנט התמד ומומנט כח תרגול #0 מרכז מסה, מומנט התמד ומומנט כח בדצמבר 03 רקע תיאורטי מרכז מסה עד כה הסתכלנו על גוף כאילו היה נקודתי. אולם לעיתים נרצה לבחון גם מערכת המכילה n גופים שלכל אחד מהם יש מסה m i ומיקום r. i ניתן לבחון

Διαβάστε περισσότερα

חוק קולומב והשדה החשמלי

חוק קולומב והשדה החשמלי דף נוסחאות פיסיקה 2 - חשמל ומגנטיות חוק קולומב והשדה החשמלי F = kq 1q 2 r 2 r k = 1 = 9 10 9 [ N m2 חוק קולומב 4πε ] C 2 0 כח שפועל בין שני מטענים נקודתיים E (r) = kq r 2 r שדה חשמלי בנקודה מסויימת de

Διαβάστε περισσότερα

A X. Coulomb. nc = q e = x C

A X. Coulomb. nc = q e = x C תוכן ) חוק קולון... ( זרם חשמלי... 3 3) מעגלי זרם... 4 שדה חשמלי ופוטנציאל... 5 (4 מתח (5 ופוטנציאל... 6 שדה מגנטי... 7 השראה אלקטרומגנטית... 9 (6 (7 ( ים חוק קולון נוקלאונים אטום סימון האטום חלקיקי הגרעין

Διαβάστε περισσότερα

אלגברה מודרנית פתרון שיעורי בית 6

אלגברה מודרנית פתרון שיעורי בית 6 אלגברה מודרנית פתרון שיעורי בית 6 15 בינואר 016 1. יהי F שדה ויהיו q(x) p(x), שני פולינומים מעל F. מצאו פולינומים R(x) S(x), כך שמתקיים R(x),p(x) = S(x)q(x) + כאשר deg(q),deg(r) < עבור המקרים הבאים: (תזכורת:

Διαβάστε περισσότερα

כלליים זמן: S מחסנית, top(s) ראש המחסנית. (Depth First Search) For each unmarked DFS(v) / BFS(v) רקורסיבי. אלגוריתם :BFS

כלליים זמן: S מחסנית, top(s) ראש המחסנית. (Depth First Search) For each unmarked DFS(v) / BFS(v) רקורסיבי. אלגוריתם :BFS כלליים שיטות חיפוש בבגרפים שיטה 1: חיפוש לרוחב S (readth irst Search) זמן: ) Θ( V + הרעיון: שימוש בתור.O שיטה 2: חיפוש לעומק S (epth irst Search) Θ( V + ) יהי =(V,) גרף כלשהו, V הוא צומת התחלת החיפוש.

Διαβάστε περισσότερα

תרגול 6 חיכוך ותנועה מעגלית

תרגול 6 חיכוך ותנועה מעגלית נכתב ע"י עומר גולדברג תרגול 6 חיכוך ותנועה מעגלית Physics1B_2017A חיכוך כוח הנובע ממגע בין שני משטחים. אם יש כוח חיצוני הפועל על גוף בניסיון לייצר תנועה, ייווצר כוח בכיוון ההפוך כתוצאה מחיכוך. אם אין תנועה

Διαβάστε περισσότερα

סדרות - תרגילים הכנה לבגרות 5 יח"ל

סדרות - תרגילים הכנה לבגרות 5 יחל סדרות - הכנה לבגרות 5 יח"ל 5 יח"ל סדרות - הכנה לבגרות איברים ראשונים בסדרה) ) S מסמן סכום תרגיל S0 S 5, S6 בסדרה הנדסית נתון: 89 מצא את האיבר הראשון של הסדרה תרגיל גוף ראשון, בשנייה הראשונה לתנועתו עבר

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 2

מתמטיקה בדידה תרגול מס' 2 מתמטיקה בדידה תרגול מס' 2 נושאי התרגול: כמתים והצרנות. משתנים קשורים וחופשיים. 1 כמתים והצרנות בתרגול הקודם עסקנו בתחשיב הפסוקים, שבו הנוסחאות שלנו היו מורכבות מפסוקים יסודיים (אשר קיבלו ערך T או F) וקשרים.

Διαβάστε περισσότερα

חשמל ומגנטיות תשע"ה תרגול 3 פוטנציאל חשמלי ואנרגיה אלקטרוסטטית

חשמל ומגנטיות תשעה תרגול 3 פוטנציאל חשמלי ואנרגיה אלקטרוסטטית חשמל ומגנטיות תשע"ה תרגול 3 פוטנציאל חשמלי ואנרגיה אלקטרוסטטית הפונציאל החשמלי בעבור כל שדה וקטורי משמר ישנו פוטנציאל סקלרי המקיים A = φ הדבר נכון גם כן בעבור השדה החשמלי וניתן לרשום E = φ (1) סימן המינוס

Διαβάστε περισσότερα

גליון 1 גליון 2 = = ( x) ( x)

גליון 1 גליון 2 = = ( x) ( x) 475 פיסיקה ממ, פתרונות לתרגילי בית, עמוד מתוך 6 גליון מה שוקל יותר: קילו נוצות או סבתא תחשבו לבד גליון Q in E k, q ρ ( ) v Qin ρ ( ) v v 4π Qin ρ ( ) 4π v העקרונות המנחים בגיליון זה: פתרון לשאלה L ( x)

Διαβάστε περισσότερα

תשובות מלאות לבחינת הבגרות במתמטיקה מועד קיץ תשע"א, מיום 23/5/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן.

תשובות מלאות לבחינת הבגרות במתמטיקה מועד קיץ תשעא, מיום 23/5/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן. תשובות מלאות לבחינת הבגרות במתמטיקה מועד קיץ תשע"א, מיום 3/5/011 שאלון: 635860 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן. שאלה מספר 1 נתון: 1. ממקום A יצאה מכונית א' וכעבור מכונית ב'. 1 שעה

Διαβάστε περισσότερα

s ק"מ קמ"ש מ - A A מ - מ - 5 p vp v=

s קמ קמש מ - A A מ - מ - 5 p vp v= את זמני הליכת הולכי הרגל עד הפגישות שלהם עם רוכב האופניים (שעות). בגרות ע מאי 0 מועד קיץ מבוטל שאלון 5006 מהירות - v קמ"ש t, א. () נסמן ב- p נכניס את הנתונים לטבלה מתאימה: רוכב אופניים עד הפגישה זמן -

Διαβάστε περισσότερα

: מציאת המטען על הקבל והזרם במעגל כפונקציה של הזמן ( )

: מציאת המטען על הקבל והזרם במעגל כפונקציה של הזמן ( ) : מציאת המטען על הקבל והזרם במעגל כפונקציה של הזמן מעגלי קבל בנוי כך שמטען איננו יכול לעבור מצידו האחד לצידו האחר (אחרת לא היה יכול להחזיק מטען בצד אחד ומטען בצד השני) ולכן זרם קבוע לא יכול לזרום דרך הקבל.עניינינו

Διαβάστε περισσότερα

פיזיקה 2 שדה מגנטי- 1

פיזיקה 2 שדה מגנטי- 1 Ariel University אוניברסיטת אריאל פיזיקה שדה מגנטי- 1. 1 MeV 1.חשב את זמן המחזור של פרוטון בתוך השדה המגנטי של כדור הארץ שהוא בערך B. 5Gauss ואת רדיוס הסיבוב של המסלול, בהנחה שהאנרגיה של הפרוטון הוא M

Διαβάστε περισσότερα